除具有普通板式橡胶支座的竖向刚度与弹性变形,能承受垂直荷载及适应梁端转动外,因四氟乙烯与梁底不锈钢板间的低摩擦系数(μ≤0.08)可使建筑上部构造的水平位移不受限制。
橡胶支座主要力学性能指标如:抗压弹性模量、抗剪弹性模量、水平抗剪倾角、不锈钢板摩擦系数、极限抗压强度等,都是QZ球形橡胶支座进入施工现场后决定能否使用的重点检测指标。
环境影响:隔震层可能存在潮湿、临时泡水等情况,往往造成支座中的非不锈钢部分锈蚀,进而影响到滑移面改变摩擦系数,造成故障。
还有就是工人随意性造成的:支座垫石简单的采用砂浆进行代替。这样做的后果是容易造成支座底部支承力不够、或不均匀,使得砂浆破裂或支座受力不均,导致支座扭曲变形;支座顶部钢板偏薄以及生锈严重。这样的异常现象容易随着时间的增长,钢板锈蚀严重,导致支座受力不均或支座无法受力。
隔震层设置在地下室以上,上部结构以下(图。这也是笔者自己偏爱的。上、下两个完整的刚体,中间是柔性的隔震层,结构概念清晰明确,隔震构造比较容易实现并保持功能,当然到达地下室的电梯和楼梯还是要小小麻烦一下。电梯井筒多采用从隔震层以上下挂,如果是多层地下室,下挂的高度可能会达到十几米,如在建的北京新机场。为避免过大的下挂难度,也有在电梯井筒体下面设置橡胶支座或滑板支座的,仅考虑其竖向承载作用和可变形能力。楼梯需要在隔震层相应的位置结构分断,容易忽略的是,相应的扶手栏杆也需要分断。
建筑摩擦摆支座,也被称为摩擦摆减隔震支座或摩擦滑移隔震支座,是一种特殊的建筑结构支承装置。它利用钟摆原理,通过滑动界面的摩擦消耗地震能量,实现减震功能,并通过球面摆动延长梁体运动周期,实现隔振功能。
经过长期施工我们总结出了一套可广泛应用的橡胶支座更换技术,从方案的确定、施工过程、施工注意事项出发,保证建筑支座作用的正常发挥。
检验项目及检验周期客运专线建筑盆式橡胶盆式橡胶支座用原材料及部件进厂后的检验项目及检验周期应符合表的规定。
(图一)建筑高承载力耗能隔震支座
下面给大家简单介绍下这个进场时候的要求吧:板式橡胶支座适用规范:公路建筑板式橡胶支座技术标准(JT/T4-2004)。
本文简单介绍了外隔震橡胶制品工程开发应用情况,以实例说明了橡胶隔震制品对建筑物减震的重要作用,概括了隔震体系影响建筑结构成本降低与增加的原因等,为隔震工程设计单位提供参考与依据。
如果执行的转换连续梁桥,必须在明尼苏达州系列支座和硫水泥砂浆块之间采取保温措施,以避免损坏填充四氟乙烯板、橡胶块对于盆式支座连接板未拆除是由于安装连接板未拆除,导致成桥后支座不能自由滑动所致。
就抗滑而言,橡胶支座与砼表面的摩阻系数大于它与钢板间的摩阻系数,则橡胶支座不设钢板,其抗滑稳定性会更好;就局部抗压而言,梁体混凝土的强度大于橡胶支座的容许抗压强度,无须再在垫石或梁底面埋设钢板。
1988年交通部开始制定了交通行业标准《公路建筑板式橡胶支座规格系列》,此规格系列完全遵照JTJ023-85的规定进行设计。
不同的建筑上要使用不同类型的橡胶支座或型号的橡胶支座,为了克服上拔支座反力而必需承受拉力,此时支座即要承受压力又要承受拉力,以下板式橡胶支座、盆式橡胶支座包括球型支座都可以做成拉压支座形式。
橡胶支座石的位置放样通常是从盖梁中心线向两边放,一般是放垫石中心点,通过纸,可算出盖梁中心线距垫石中心的距离,然后放样就可以了。
且已知主梁恒载支点反力NMIN=726KN,大于所选规格支座抗滑小承载力273KN,故全部满足要求。
(图二)水平力分散型LNR橡胶隔震支座什么价格
普通橡胶支座:由橡胶层和钢板交替叠合而成,通过橡胶的弹性变形来吸收地震能量。
盆式橡胶支座安装时人员配置劳动力配置及工作任务序号工种人数工作任务1施工总负责人1组织指挥、统筹规划、调度2技术负责人1负责相关技术监督、指导及现场技术问题处理3质量、安全各1负责现场质量、安全监督4工长1负责现场施工协调5塔吊司机及指挥3~5将隔震橡胶支座吊运到指定位置6测量工程师2水平、标高测量定位、校核7混凝土运输车司机2运输混凝土8混凝土工2浇筑混凝土9试验员1隔震橡胶支座、混凝土检测10电工1现场施工用电管理水电预埋管不得穿入柱帽节点区域;上柱帽柱底纵筋可向外侧;柱头的钢筋网片,绑扎时应注意几层纵向钢筋要对齐,避免上下钢筋错位形成过密的网眼,不利于混凝土骨料通过和振捣棒的穿插。
从3中可以看出,加入板式橡胶支座后,流入各桥墩总的功率流发生了变化:普通活动支座时,由于活动墩与梁部无水平联系,从梁部传下的功率流,全部流入固定墩,流入桥墩的总功率流实际上反应的是流入固定墩的功率流,功率流曲线比较平坦;加入板式橡胶支座后,加强了活动墩与梁部的联系,功率流在各个活动墩之间分配,随着支座水平刚度的增加,总功率流减小;当激振频率与某活动墩的自振频率接近时,即结构发生准共振时,则流入该墩的功率流增加,总功率流局部会出现峰值。
更为重要的是,对于重要或特殊的工程结构,隔震结构明显优于常规结构体系,可以处理后者难以解决的问题(诸如对室内重要设备或非结构构件的保护、地铁车辆段上部空间的开发使用等,此类问题共同之处在于降低结构的设防烈度,而常规结构体系无法实现这一点)橡胶支座上下各有一块连接钢板,连接钢板通过高强螺栓与预埋钢板连接。
供应各类建筑橡胶支座价格,建筑橡胶支座类型很多,主要根据支承反力、跨度、建筑高度以及预期位移量来选定。
这样做的后果是容易造成支座底部支承力不够、或不均匀,使得砂浆破裂或支座受力不均,导致支座扭曲变形;支座顶部钢板偏薄以及生锈严重(11)。
隔震结构利用隔震层的较小水平刚度使结构的自振周期远离场地周期,避免共振。隔震层相对基础与上部结构柔性好,地震时,结构变形集中在隔震层部位,地震能量大部分被隔震层吸收,从而保护上部结构的安全。
耐久性好,耐高温,力学性能受周围环境温度影响小。
(图三)HDR1100隔震支座
试验样品成品盆式橡胶支座试验应采用实体盆式橡胶支座,受试验设备能力限制时,可与用户协商选用有代表性的小型盆式橡胶支座进行试验;盆式橡胶支座摩擦系数可选用小型盆式橡胶支座进行试验。
传统抗震建筑底部与基础牢牢连接在一起,地震来临时上部结构剧烈晃动,并且越到顶部晃动幅度越大,从而导致结构产生过大的层间变形,引起结构的破坏。为提高传统抗震结构的抗震能力往往要增加结构的强度、刚度和延性,换言之必须增大构件的截面和配筋,使结构具有足够的能力去“抗”地震作用;隔震建筑则是削弱建筑底部与基础的连接作用,当隔震建筑遭受地震时,结构的变形主要集中在隔震层,而上部结构则保持缓慢平动,这样上部结构楼层剪力和层间变形就会显著减小,从而保障了上部结构的安全性。
通常在布置支座时需要考虑以下的基本原则:上部结构是空间结构时,支座应能同时适应建筑顺桥向(X方向)和横桥向(Y方向)的变形;支座必须能可靠的传递垂直和水平反力;支座应使由于梁体变形所产生的纵向位移、横向位移和纵、恒向转角应尽可能不受约束;铁路建筑通常必须在每联梁体上设置一个固定支座;当建筑位于坡道上,固定支座一般应设在下坡方向的桥台上;当建筑位于平坡上,固定支座宜设在主要行车方向的前端桥台上;支座各部应保持完整、清洁。
近日有与同行探讨某隔震方案,说起一个新的问题,《建筑工程建筑面积计算规范》(GB/T50353-201规定:结构层高在20M及以上者计算全面积,结构层高不足20M的计算1/2面积。本条规定主要是针对坡地建筑,但有些地方的建设主管部门理解较为生硬,要求对独立的、除检修以外并无使用功能的隔震层也套用本条文,导致如果采用隔震技术建筑面积会增加的情况出现,使项目遭遇困境,这本是不该发生的故事。
板式橡胶支座安装前应将墩、台支座支垫处和梁底面清理干净;应先检查板式橡胶支座的中心位置、板式橡胶支座垫石顶面标高是否准确。
为保证支座的转动和滑动都是在润滑脂润滑条件下进行,需考虑设计补充硅脂装置,减低滑板材料的磨耗,保证支座的摩擦系数稳定,提高支座的整体性能。
所以,GPZ(II)盆式橡胶支座是能满足大的支承反力,大的水平位移,大的转角要求的新型产品橡胶支座在安装使用过程中常见异常现象的分析与排除橡胶支座是建筑结构的一个重要组成部分,是连接建筑上部结构和下部结构的重要构件,是直接影响建筑寿命与行车安全的关键。
但是,隔震支座的竖向刚度一般不大,比如一个600直径的铅芯橡胶支座的竖向刚度为2667KN/MM(某产家参数),而一个600直径的C40混凝土柱的线刚度为9189KN/MM,相差达2倍多。